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ABSTRACT

Equations of motion are derived for-:the transient response, to
shock wave, of a submerged shell with internal structures. A substructuring
procedure, which does not require calculation of a system stiffness matrix, is
employed to obtain these equations in a general manner for arbitrary

internal structures approximated bv finite elements.
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I INTRODUCTION

In an earlier paper (Ref. [1]), equations of motion for the transient
response, to a shock wave, of a submerged shell with internally attached
structures were obtained by a substructuring procedure. Several quantities
in these equations, relating to the attachments, were only broadly defined,
and determined in detail only in an ad hoc manner for specific appendages.
In this report, matrix expressions for these quantities are defined which
permit their computation for arbitrary internal structures approximated by

finite elements.

The present report addresses the same basic problem as Ref. [1], but
does not consider the details of the fluid loading on the shell, which may be
found in Ref. [1]. The effects of external loads applied to the internal

structures, which were not considered in Ref. [1], are included here.

The substructuring procedure described herein is intended for use in
transient response problems. Unlike many other substructuring schemes, which
are used primarily to solve steady-state problems (see, e.g., Ref. [2]), the
present method does not involve the modes and natural frequencies of the combined
system (shell and appendages). In addition, a system stiffness matrix is not
required, since the present technique employs the interaction forces and

moments at the junctions of the shell and the attached structures.
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IT  GENERAL KINEMATICS

Consider a shell S of arbitrary geometry (see Fig. 1). Let n, 2 and 3
denote mutually perpendicular directions, respectively normal and tangent to

the middle surface of the shell. If dn’ d, and d3 denote corresponding

2
displacement components of this surface, a 3 by 1 displacement matrix d(s, t)
may be defined, in which s denotes an arbitrary point on the middle surface,
t is time, and underlining indicates a matrix; dn is assumed positive inward.
Corresponding to this displacement matrix, the 3 by 1 jth shell mode Qj(s)

has components ¢?, ¢§ and ¢§, with which are associated a natural frequency

wj and a generalized mass

» T
uj = I mgj gj dA (1)
A

in which m denotes the mass per unit of surface area A of the middle surface
of the shell and the superscript T denotes a transpose. The shell modes,

which satisfy the orthogonality condition

T
m . dA =0 if k #j 2
J 2 8, ] (2)
A
may be used as expansion functions for the shell displacements, i.e.,

\%
S

d(s, t) = ] qq (1) ¢ (s) (3)
k=1

in which the qsk(t) are generalized coordinates for the shell and vs is

the number of modes of the shell considered.

Assume that an elastic structure 0, entirely within the shell S, is attached
to S at points sI(I w® 1, Zyeiney NA), as shown in Fig. 2. Let O be approximated
by finite elements with interface (attached) nodal points I, coinciding with

s and interior (unattached) nodal points a(a = 1, 2,...,NU), corresponding




L Qs

to material points of 0 not in contact with S. The finite element representation

of 0 is assumed to include rotational degrees of freedom.

At each interface point I, certain components of displacement and/or
rotation of 0 must match corresponding quantities of S, depending on the

type of support. Thus, at an interface point I, define the vector

“ %
B Mo )
ol %
Ol

where the upper partition, an ﬁI by 1 matrix, contains those physical degrees
of freedom of 0 which must match corresponding physical degrees of freedom of
S, and the lower partition, an ﬁI by 1 matrix, contains the remaining physical

“

degrees of freedom of 0 active at interface point I.

Since the interior points of 0 are not connected to S, define the vector

of physical degrees of freedom of 0 at an interior point a as

=X (5)

It may be observed in Eqs. (4) and (5), and in what follows, that the symbol -
above a quantity indicates & quantity associated with physical degrees of
freedom of 0 constrained to move with S, while the symbol ~ above a quantity

indicates a quantity associated with physical degrees of freedom of 0 not

*
) At a simple support, e.g., the displacements of 0 and S must be equal,

but the rotations of 0 and S are not equal. Thus, assuming two active
physical degrees of freedom, the displacement of 0 is located in the
upper partition of Eq. (4), and the rotation of 0 is located in the
lower partition of Eq. (4).




T

constrained to move with S.

If the appropriate definitions of Eqs. (4) and (5) are applied to all

nodal points of 0, the physical degrees of freedom of O may be arranged in

the form

X, = [----- (6)

(SNI

in which the upper partition, an N by 1 matrix, contains the gol terms from

all interface points [Eq. (4)] and the lower partition, an N by 1 matrix,

contains the EU terms from all interface points [Eq. (4)] and the Xba

I i
terms from all interior points [Eq. (5)]. 3

In the sequel, the elements in the upper partition of Eq. (6) will be

referred to as '"constrained physical degrees of freedom of 0", while the
elements in the lower partition will be referred to as "unconstrained physical

degrees of freedom of 0". The matrix has size N by 1, where

X5

N=N+N (7
is the total number of active physical degrees of freedom of ©.

From Eq. (3), the shell displacements at an interface point I may be

e

written as

Vg

’ d(s;, t) =4 = kzl A, (t) 9, (s7) = ¢.q¢ (8)

e

where QI is a 3 by Vg matrix with elements Qk(sl) and o is a Vg by 1 matrix

containing the generalized coordinates of the shell. Similarly, the rotations

of the shell cross section at an interface point I may be expressed as

N T B

s R _ R
B; = kzl g (t) & (s1) = & g S




in which_fz(sl) denotes the 3 by 1 matrix of rotations about the n, 2 and 3

axes in the mode ¢ and Q: is a 3 by vy matrix with elements Q:(SI).

Continuity of appropriate components of displacement and rotation of

shell and substructure at an interface point I requires that

=D (10)

where 21, an EI by 6 matrix, is a local rotational coordinate transformation

which transforms quantities expressed in the S-coordinate system into the

*)

O-coordinate system. Each row of BI contains at most three non-zero terms.

Use of Eqs. (8) and (9) permits Eq. (10) to be written in the form

Xo1 = &1 S5 Riks

where_qI is an ﬁI by vS matrix given by

S =5 |5 (12)

Application of Eq. (11) to all interface points, with reference to Eq. (6)
for proper ordering, permits the continuity between shell and substructure

to be written as
X = C 4 (13)

in which C is an N by v_ matrix having the form

S

*) The coordinate transformation array in Eq. (10) is used for convenience
in presentation. Actually, only a 3 by 3 coordinate transformation array
is required at each interface point, the rows of this array applying to
both displacements and rotations.




g = S (14)

Equation (13) expresses the constrained physical degrees of freedom of O in |
*) ;

terms of the free-free modes of S.

As suggested in Ref. [3], the response of 0 may be taken as the super-

position of its static response to the actual motion of its supports and

**)

’

the dynamic response with respect to fixed supports, i.e.

5ol tek o

In Eq. (15), Qo is the ﬁ by vo fixed modal matrix, where vo denotes the f
number of fixed-base modes, and - is the Vs by 1 matrix of corresponding E
generalized coordinates. The & by N matrix ; is obtained by considering
the static response of 0 to an arbitrary support motion (support "settlement") i

when the nodal loads corresponding to the unconstrained physical degrees of 5

freedom vanish. 1In such a case, Eq. (15) becomes

A

& ¥ {
(Ko)static T (Ko)static (16) |
i
* {
Equation (13) replaces Eq. (5) of Ref. [1]: !
éo(sj’ t) - Q(Sj. t)
k)

Equation (15) replaces Eq. (4) of Ref. [1]:

dy(s, t) = E 54 () ¢, (8) + g(s, ©)




e

*

As shown in Ref. [2], the matrix g (sometimes termed the "constraint

modes") may be obtained by considering the linear static "force-displacement"

relation for O:

5()—(O)static =3 (17)

in which K is the N by N unconstrained stiffness matrix for the substructure
and R is the corresponding vector of nodal forces and moments. For the

determination of‘i, Eq. (17) may be partitioned to correspond to Eq. (6),

yielding
X r 1
Ey 1 % % =
%l = = |----- (18)
ko1 | X % 0
static

since the only nodal loads are the reactions. It then follows from the lower

partition of Eq. (18) that

A —-l —
(go)static % _522 521 (Eo)static (1%

where the superscript -1 indicates an inverse. A comparison of Eqs. (19)

and (16) shows that

8= Ky Ky e

Thus, the elements of g are the static displacements and rotations (including
rigid-body motion), corresponding to the unconstrained physical degrees of
freedom of 0, which result from successive unit displacements and rotations,
corresponding to the constrained physical degrees of freedom of o, at
attachment points I when all other constrained physical degrees of freedom

of 0 are set equal to zero.

The use of Eq. (13) permits Eq. (15) to be written as

A ~

l(o=ioso+ﬁgss (21)

e
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As suggested in Ref. [2], Eqs. (13) and (21) may be combined into the single

matrix equation

X =I'g (22) |

|
1

ik B T o i (23)
|
1

and the array of generalized coordinates is given by

et MO (24)

t
|
i
L] ;
i
a, I
In Eq. (22), 50 is an N by 1 matrix, q is a v by 1 matrix, with

V=V, £ N (25)

and IC is an N by V matrix. Equation (22) may be written in subscript !

notation as

Ru——

- o

5
8
!
4
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5
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IIT EQUATIONS OF MOTION OF SHELL

The kinetic and potential energies of the combination of shell S and

internal structure 0 may be written as

S N
1 .2 1 > 2
T== ¥ ug. +3 § M X
2 = j'sj 2 j=1 J 9y

v

S N N

) 2 1

- e

L e R R R

in which the ch are given by Eq. (26), the Kjk are the elements of the

partitioned stiffness matrix of Eqs. (17) and (18), and the Mj are the

elements of the partitioned mass matrix of 0 from an assumed lumped mass

*)

formulation °. The mass matrix must be partitioned to correspond to Eq. (6),

3 0
L |

=
it
e, ISR,

0 Mo

where the upper left partition, an N by N matrix, and the lower right

partition, an N by N matrix, are diagonal.

The equations of motion of the shell may be derived from Lagrange's

equations:

d, 9T v _ o
dc(aqu) i Jag, Qpy + Qg5 (3 = 1,2,...,v5)

*) If Eq. (26) is substituted into Eqs. (27) and (28), one obtains the
equations which replace Eqs. (6) and (7) of Ref. [1]:

T L e
T(dg5d55) = 3 § Hydgy + Toldgyedgy)

1 2 2
V(dgy2959) = 2 E MiW39g4 + Vg(d54095y)

(27)

(28)

(29)

(30)




in which the QTj are the generalized forces corresponding to the total fluid
pressure p, acting on the surface of the shell (see Fig. 1) and the aSj are

the generalized forces from the action of 0 on S, exclusive of the contribution
derivable from the kinetic and potential energies. As shown in the Appendix,

the QSj are the elements of the matrix

g, =c' &R (31)
where E, an N by 1 matrix, is the vector of known applied nodal loads acting
on 0 (see Fig. 2).
It follows from Eqs. (26) and (24) that
axok 3 axok { TC Gli= b 2,0, VS’ ats
quj quj kj e =4, 2y.c-5 N)
which may be seen to reference terms in the upper and lower left partitions
of Eq. (23). Thus, the use of Egs. (27), (28), and (32) leads to
N
d g C .o
dt(aq ) “ qSJ +k£1 TijkXok (33)
N N
oV C
N +ZT.ZK.x. (34)
quj 33 9] Yot kj §ui ki oi
The substitution of Eqs. (31), (33), and (34) into Eq. (30), with reference
to Eqs. (18), (23), and (29), results in
By ey P UL, Ggr ® Qs =P,  (I= 1, Z,ueey V) (35)
g 3.3 Tj j S

where the Pj are the elements of the vector




whose addends are defined as

- T — =

E=C oy %5+ 1y X5t Ky, Kl (37)
P s RN wEoE W (38)
E=CE lo, 2, vk 5, vk I, -8R

The bracketed term in Eq. (38) may be recognized as the physical

equations of motion of 0. Hence, the contribution of Eq. (38) vanishes,

and the equations of motion of S become

o9 2
U, F PO a0 0 39)
1955 T M4%5 955 T g + O (

in which the generalized forces on , corresponding to the forces and moments

exerted by 0 on S, are

N b N
, = - + 40
% k§1 Ces M o 121 Kt %o1) o
which result from the dynamic reactions
v N
Ry = -(M X + 121 K, Bl (41)

)

*
exerted by 0 on S 7.

Using Eqs. (22) to (24), the equations of motion of S may now be written

in the form

*
) Equations (40) and (41) are generalizations of specific examples
given by Eqs. (17), (18); (22), (23); (Al), (A2); and (A12), (Al13),
(A16) of Ref. [1].




where ij

exerted by 0 on S and vice-versa, are the elements of the N by 1 matrix

is the Kronecker delta and the Fi’ the elastic forces and moments

E=ly, *k), 8 045 +ky; 95 4

The effect of inertia forces appears in the double summation in Eq. (42)

It may be observed that the equations of motion of the shell have stiffness

coupling only between shell and substructure.

In the equations of motion of the shell, the contributions of the inertia
forces and the elastic reactions of 0 on S may be given a simple physical
interpretation by referring to Fig. 3. Figure 3a shows an idealized finite
element model of a substructure 0 attached to a shell S, and Figs. 3b and 3c
show the manner in which Eqs. (42) and (43) treat-the connection of o to S.
The effect of inertia forces results from the rigidly attached point mass of
Fig. 3b, while the effect of the elastic reactions of 0 on S results from the

"spring force'" of Fig. 3c.

(42)

(43)
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IV EQUATIONS OF MOTION OF SUBSTRUCTURE 3
The equations of motion of the substructure 0 may be obtained from
Lagrange's equations: i
|
d , 9T LAY 2 ‘
; o (s — (0 o o e SRR (44) |
dt quj quj 0j o '
E in which the ch are the generalized forces corresponding to the known L

applied nodal loads acting on O. As shown in the Appendix, the ﬁoj l

are the elements of the matrix

i

Q, = o2 R (45) |

|

It follows from Eqs. (26) and (24) that E

axck ) axok A TC G =t 2y ese's vc; s E

q j+Y = cic i

aqoj chj k, j+ 3 =1y 22,0005 N) i

i

which may be seen to reference terms in the upper and lower right partitions i
of Eq. (23). Since the upper right partition of Eq. (23) is a null matrix, i
the use of Eqs. (27), (28), and (46) leads to
8.4 .

d , 3T Z I

e T Pt o SXL = (47) |

dt aqoj k=1 Okj M XotHw |

N .~ N i

= ¢ y = . X (48) |

8a55 oy Okd 45 Kl 1 %01 , |

|

The substitution of Eqs. (45), (47), and (48) into Eq. (44) results in i
i

B " N i |

kzl ok Mesi Xorsi * 121 T e (49) |

]

|

which may be written in matrix form as ;
?

5 oF e |

8 = 0T R (50) 4




SO

e

If Eqs. (22) to (24) are substituted into Eq. (50), and the matrix products

are carried out, there results

>

T ~ i /\T A /\T ~

+ ‘
- 5y & 4o ky2 85 95 * 85 (kyy + Ky, B) € g5 |
: (51) ||
AT ~ 3 n AT ~ !
Y82 Bl T4 R
In view of Eq. (20), which defines the constraint modes, the third Ff
term of Eq. (51) vanishes. Moreover, as discussed in Ref. [2], the fixed- 'E
base modes of 0 are the solutions of the eigenvalue problem EH
. {
k,, (0. = 6 m () (52) E

—22 j oj =22 90 j ;
f
i

where woj is the natural frequency of the jth mode, and hence are orthogonal.

Thus, Eq. (51) may be simplified to yield the equations of motion of o :

by do t o 8o "85 R U S C (59

where Eo and 50 are diagonal matrices whose main diagonal terms are,

respectively, the generalized masses and generalized stiffnesses of o, and i

_ Sy =
G- i o my e (56)

is a Vs by N matrix whose columns are the expansion coefficients of a modal 4

series representation of the constraint modes. In subscript notation, Eq. (53)

*
becomes

e vt =

Vg

1 A s g e
7 15 q’okj R, - ij ikai“Si] G =1, 2,...,\)0) (55)

N
oy Yoy kzl [uoj

It may be observed that the equations of motion of the substructure o have !

inertia coupling only between shell and substructure.

S

*
) Equation (55) may be recognized as a generalization of Eq. (A8) of Ref. [1].
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\ CONCLUDING REMARKS

The equations of motion for the transient response of a shell S with
internal structure O are given by Eqs. (42), (43), (53), and (54). It is
important to note that no total system (S + 0) modal stiffness matrix is
required in the present formulation, as is required when eigenvalues and
eigenvectors for the entire system are sought (see, e.g,, Ref. [2]). It
should also be noted that, in view of the stiffness coupling between S and o
in Eqs. (42) and (43), the modal mass matrix to be inverted in the solution
of a transient response problem has size Vg by Vg determined solely by the
number of modes of the shell employed in the solution. Formulations with
inertia coupling between shell and substructure require the size of the modal

mass matrix to be inverted to increase as the total number of modes V increases.

The physical stiffness and mass matrices of 0, K and M of Egs. (18) and
(29), respectively, may be obtained by modifying a finite element computer
code such as SAPIV (Ref. [4]). The constraint modes may be determined by
means of Eq. (20), or by utilizing a solution option available with SAPIV. Hence,
it is possible to evaluate all of the matrices required in Eqs. (42) and (43)
by using only those rows of K and only those main diagonal terms of M which
correspond to the constrained physical degrees of freedom of 0. Once the
expansion coefficients of the constraint modes [Eq. (54)] and the modal
coefficients for the interaction forces and moments [Eq. (43)] have been
evaluated, the constraint modes and the matrices K and M may be eliminated from
the final form of the equations of motion of S and 0. This elimination
and the absence of a system modal stiffness matrix will reduce the

computer core (central memory) required to solve a given problem.

=y

g e




= L6 =

The present formulation will also reduce the amount of computer
time (central processor time) required to set up the matrices in the equations
of motion, as compared with that required by a method employing a system modal
stiffness matrix. By way of example, if the formulation of Ref. [2] is used

for a transient response problem, the matrices

=1 %71

uC = 17 u 1€

must be evaluated. The computer time required to evaluate Eq. (56) may be
excessive, especially if the problem under consideration requires many modes

v and/or many physical degrees of freedom of o, and if K is not well banded.

It should be pointed out that the rearrangement of physical degrees of freedom
of 0 to produce the partitioning of Eq. (18) usually results in a poorly banded
matrix. For a lumped mass formulation, the computer time required to evaluate
Eq. (57) is not significant compared with that needed to evaluate Eq. (56).
Thus, a reduction in the amount of computer time required to set up the
equations of motion is obtained by the elimination of a system modal

stiffness matrix. A reduction in solution time is also quite probable.

The free-free modes of the shell S may be determined by means of a computer
code such as BOSOR4 (Ref. [5]), while SAPIV may, of course, be used to obtain
the fixed-base modes of the substructure ¢ . If a consistent mass formulation
is desired for o, the equations of Sections III and IV may be modified in a
straightforward manner. However, in such a case, SAPIV, which is based on
a lumped mass formulation, must be replaced by a computer code employing a
consistent mass formulation. Although the equations derived in Sections 111
and IV deal with one piece of internal structure, the present method is easily

extended to include any number of internal appendages.

(56)

(57)

!
i
§
]
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APPENDIX - GENERALIZED FORCES DUE TO APPLIED LOADS ON SUBSTRUCTURE

The virtual work due to the known applied nodal loads on substructure o
may be written as

T/\
SW = (6X) R

~ ~ ~

in which 6§0 is the N by 1 matrix of virtual displdcements and R is the
N by 1 matrix of applied loads. 1In Ea. (Al), both the virtual displacements
and the applied loads correspond to the unconstrained physical degrees of

freedom of 0 . From Eq. (21), it follows that

%%y = & 095 + & Ly
so that Eq. (Al) may be expressed as
ATr\

SW = 8q (51 B) + Sqi(c’ g R)

The virtual work of Eq. (Al) may be written in terms of generalized

forces as
sW = 8q" Q
where q is given by Eq. (24) and
n | s
. ) %

is a v by 1 matrix partitioned to correspond to Eq. (24). The use of

Eqs. (24) and (AS5) in Eq. (A4) results in

R, & o
6W = Sqg Qg + 6q_ Q_

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)




|
|

= 23
Since the variations of the generalized coordinates are arbitrary, a
comparison of Eqs. (A3) and (A6) yields

T AT
Qs =C &

| >

(A7)

A ATﬁ

82 (A8)

&£

The components of generalized force associated with the generalized coordinates

of the shell S are given by Eq. (A7), and those associated with the

generalized coordinates of the substructure O are given by Eq. (A8).
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